|
Euler substitution is a method for evaluating integrals of the form: : where is a rational function of and . In such cases, the integrand can be changed to a rational function by using the substitutions of Euler.〔N. Piskunov, ''Diferentsiaal- ja integraalarvutus körgematele tehnilistele öppeasutustele. Viies, taiendatud trukk. Kirjastus Valgus'', Tallinn (1965). Note: Euler substitutions can be found in most Russian calculus textbooks.〕 ==The first substitution of Euler== The first substitution of Euler is used when . We substitute and solve the resulting expression for . We have that and that the term is expressible rationally via . In this substitution, either the positive sign or the negative sign can be chosen. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Euler substitution」の詳細全文を読む スポンサード リンク
|